
codebgp.com

Query, measure & alert
on BGP state in real-time via GraphQL

Vasileios Kotronis | CTO, Code BGP | Dr. sc. ETH Zurich
vkotronis@codebgp.com

21 June 2023 | Bern

codebgp.com

About me

Vasileios Kotronis

CTO & co-founder | Code BGP

vkotronis@codebgp.com

https://www.linkedin.com/in/vasileios-kotronis/

Zurich (2011-2015)
Dr. sc. ETH Zurich (D-ITET)
Open Systems AG

Athens (2006-2011, 2020-now)
NTUA ECE Diploma
Current base

Heraklion (2016-2019)
FORTH Postdoc ARTEMIS OS
Code BGP

codebgp.com

BGP hijacks, leaks & route changes affect our networks

● Network teams are blind to what is happening with their Internet addresses and routes

○ Only the tip of the iceberg gets known

○ Routing events can critically affect:

■ reliability

■ security

■ performance

● Rapid action is critical when dealing with BGP outages

○ Detect events in seconds

○ Track the current state of the network (global routing system)

○ Analyze on-going events

○ Automation: immediate programmatic access to BGP data (streaming APIs)

codebgp.com

What we do: ingestion, processing, storage

● We collect/ingest BGP data (state) from real-time (streaming) data sources

○ From: Code BGP monitors, RIS Live, BGP/BMP sessions (your own routers), RPKI

○ Via: BGP, BMP, websockets, REST, etc.

● We process and store this state in real-time using a distributed event-driven mservice architecture

Adapter
Adapter

Adapter
Adapter

Adapter
Adapter

Adapter
Processor

codebgp.com

● We expose this state to the user (and other frameworks) in real-time via GraphQL (UI/API)

What we do: looking glass

codebgp.com

● We expose this state to the user (and other frameworks) in real-time via GraphQL (UI/API)

What we do: looking glass

codebgp.com

● What it is

○ Query language for APIs

○ Runtime for fulfilling queries with existing data

● Features

○ Ask exactly the data you need

○ Get many resources in single request

○ Single endpoint + type system: organized in terms of types and fields, not endpoints

○ No-version API evolution

○ Integration with own data + code

GraphQL basics
https://graphql.org/

https://graphql.org/

codebgp.com

● Pros

○ Speed + no over-fetching/under-fetching (ask and get exactly what you need)

○ Suitable for complex microservice-based systems (unified API)

○ Hierarchical structure

○ Data “shaping”

○ Strong typing

○ No “latest” version (Facebook use case)

● Cons

○ Query complexity can be high → system load (query depth, recursion, etc.)

○ Complex caching (queries can be unpredictable, dynamic)

○ Complex rate-limiting

GraphQL pros and cons
https://graphql.org/

https://graphql.org/

codebgp.com

● Model your business domain as a “graph” by defining a schema
○ Within the schema, define:

■ different types of nodes
■ how they connect/relate to each other

○ Types may reference other types
■ e.g, a BGP route may reference a prefix or AS path

● Use GQL over your current business logic
(do not implement it in GQL!)

● Treat your API as an expressive shared language
○ Express “how” clients consume the data

(not “what” data)
○ Enable working with legacy data

● Expand/iterate the GQL schema gradually and frequently

GraphQL: thinking in graphs
https://graphql.org/

https://graphql.org/

codebgp.com

● Queries on objects fields, using optional (variable) arguments

● Directives for forming dynamic composite queries

● Mutations to modify server-side data

● Type system

○ queries/mutations

○ scalars

○ enums

○ interfaces

○ unions

● Type language: agnostic (use your favourite!)

● Queries/mutations validated and executed at run-time by GQL resolvers

● Introspection capabilities by design

GraphQL concepts
https://graphql.org/

https://graphql.org/

codebgp.com

GraphQL type system

type Prefixes {

 data_source_count: Int

 id: uuid

 ip_version: Int

 routes(

 distinct_on: [routes_select_column!]

 limit: Int

 offset: Int

 order_by: [routes_order_by!]

 where: routes_bool_exp

): [routes!]!

}

interface Identifiable {

 id: String!

}

type AutSystem implements Identifiable {

 id: String!

 number: Int!

}

https://graphql.org/

https://graphql.org/

codebgp.com

GraphQL subscriptions

● GQL feature that allows a server to send data to its clients

when a specific event happens

● Implemented with WebSockets

● Server maintains a steady connection to its subscribed client

● Breaks the “Request-Response-Cycle”

○ Client initially opens up a long-lived connection to the

server

○ Sends a subscription query that specifies which event it is

interested in

○ Every time this particular event happens, the server uses

the connection to push the event data to the subscribed

client(s).

https://graphql.org/

https://graphql.org/

codebgp.com

● Serve over HTTP(S) via single endpoint

○ GET: https://myapi/graphql?query={object{field}}

○ POST:

{

 "query": "...",

 "operationName": "...",

 "variables": { "myVariable": "someValue", ... }

}

○ Response:

{

 "data": { ... },

 "errors": [...]

}

● JSON syntax in responses (note that spec does not require it!)

GraphQL best practices (I)
https://graphql.org/

https://graphql.org/

codebgp.com

● Versioning

○ Continuous evolution

○ Add/deprecate objects and fields

● Nullable/non-nullable types should be explicitly defined

● Authorization

○ Delegate to business logic layer (not the GQL layer!)

○ Frameworks like Hasura offer appropriate support for this

● Pagination: up to API designer (typically cursor-based)

● Batching & Caching: expose globally unique IDs for clients to use/cache on

● In general: most things besides the query contexts are kept out of the spec on purpose

○ Developer/operator freedom to implement own business logic!

GraphQL best practices (II)
https://graphql.org/

https://graphql.org/

codebgp.com

● Sample primitives

○ dataSources

○ prefixes

○ autonomousSystems

○ peerings

○ routes

● Sample associations/relationships

○ dataSources → all

○ autonomousSystems →

routes.Origin, routes.Neighbor,

peerings.Left, peering.Right

○ prefixes → routes.prefix

BGPQL: A GQL API for BGP data

query MyV6Prefixes {

 prefixes(

 distinct_on: network

 where: {

routes: {originAutonomousSystem: {number: {_eq: "50414"}},

data_source_count: {_gte: 10}},

ip_version: {_eq: 6}

 } order_by: {network: asc}

) {

 network

 }

}
--

{

 "data": {

 "prefixes": [

{"network": "2a12:bc0::/48"},

 {"network": "2a12:bc0:1::/48"},

 {"network": "2a12:bc0:2::/48"}

]

 }

}

Graph Query/Response

https://graphql.org/

https://graphql.org/

codebgp.com

● Objective: make data access fast, secure and reliable

● Automatically generates your GraphQL schema and resolvers based on tables/views in your database

○ auto-generate queries and mutations

○ accompany schema with actions, metadata, etc.

○ augment fields with DB-side functions (computed fields)

● You don't need to write a GraphQL schema or resolvers

● Supports PostgreSQL, MySQL, SQL Server and more

● Written in Haskell

An enabler: Hasura GraphQL engine
https://hasura.io/

https://hasura.io/

codebgp.com

● “Live” queries

● Client receives the complete updated state when value of any (queried) field changes upstream

● The result is the full answer to the query, as it is at the time of the change

● Example: “What are the visible AS paths originated by ASes $asns and related to prefix $prefix now?”
subscription PathsRelatedToPrefix($asns: [bigint!] = [], $prefix: cidr!) {

 routes(

 where: {prefix: {network: {_eq: $prefix}}, originAutonomousSystem: {number: {_in: $asns}}}

 distinct_on: as_path

 order_by: {as_path: asc_nulls_last}

) {

 as_path

 }

}

● Note: Hasura as of recently supports also streaming subscriptions

○ Streams the response according to the cursor provided by the user while making the subscription

○ Can be used to subscribe only to the data which has been newly added to the result set

○ Not covered in this presentation! (object identification implications)

Hasura subscriptions
https://hasura.io/

https://hasura.io/

codebgp.com

● RBAC supported via rules for select/insert/update/delete operations, using session variables in claims

● Role information is inferred from the X-Hasura-Role and X-Hasura-Allowed-Roles session variables

● Other session variables can be passed by your auth service as per your requirements

Hasura authentication & authorization
https://hasura.io/

https://hasura.io/

codebgp.com

Hasura actions, event triggers, remote schemas
https://hasura.io/

https://hasura.io/

codebgp.com

query MyV6Prefixes {

 prefixes(

 distinct_on: network

 where: {

routes: {originAutonomousSystem: {number: {_eq:

"50414"}}, data_source_count: {_gte: 10}},

ip_version: {_eq: 6}

 }

) {

 network

 }

}

table:

 schema: main

 name: view_prefix

configuration:

 custom_name: prefixes

object_relationships: [...]

array_relationships: [...]

...

select_permissions:

 - role: editor

 permission:

 columns:

 - id

 - network

 - ...

 - role: viewer

 permission:

 ...

CREATE TABLE prefix (

 id uuid DEFAULT ext.uuid_generate_v4 (),

 network cidr NOT NULL,

 ip_version integer GENERATED ALWAYS AS

(family(network)) STORED,

 mask_length integer GENERATED ALWAYS AS

(masklen(network)) STORED,

 time_inserted timestamptz

);

...

Our use case: PostgreSQL → Hasura → GraphQL → applications

codebgp.com

Applications over GQL: UI

codebpg.com

codebgp.com

Applications over GQL: API

codebgp.com

const prefixMetricQuery graphql.Query = `

subscription metricsproviderFilteredPrefixesOriginASFilteringQuery(

$conf_prefixes: [String!], $conf_asns: [bigint!]

) {

prefixes(where: {

_or: [{configured_prefix_best_match: {_in: $conf_prefixes}},

 {routes: {originAutonomousSystem: {number: {_in: $conf_asns}}}}]

}) {

network

ip_version

}

}`

gaugeVec := promauto.NewGaugeVec(

prometheus.GaugeOpts{

Name: "filtered_prefixes_per_asn_total",

Help: "The total number of prefixes per ASN, for the configured ASNs and prefixes",

},

[]string{

promKeyIPversion,

promKeyAS,

},

)

Applications over GQL: Metrics

codebgp.com

Applications over GQL: Alerts

● Subscribe to alertable subscriptions on Go mservice(s)
type AlertSubscription struct {

ID string `json:"id"`

Name string `json:"name"`

Query string `json:"query"`

Vars map[string]interface{} `json:"vars"`

FireAlertRegex string `json:"fire_alert_regex"`

AlertType AlertType `json:"alertType"`

AlertSeverity AlertSeverity `json:"alertSeverity"`

Description string `json:"description"`

ReceiverType ReceiverType `json:"alertReceiverType"`

ReceiverEndpoint string `json:"receiver_endpoint"`

}

● If response data is actionable, e.g., matching a certain regex,

post to alertmanager API /api/v2/alerts
type Alert struct {

StartsAt string `json:"startsAt,omitempty"`

EndsAt string `json:"endsAt,omitempty"`

Annotations Annotations `json:"annotations"`

Labels Labels `json:"labels"`

}

codebgp.com

Applications over GQL: Alerts

● Alertmanager features

○ handles alerts sent by client applications such as the

Prometheus server

○ deduplication

○ grouping

○ routing to correct receiver integration

■ email, Slack, PagerDuty, OpsGenie, …

○ silencing

○ inhibition

○ HA

● Configuration

○ routes

○ receivers

○ matchers

○ time intervals

○ inhibit/silence rules

route:
groupWait: 10s
groupInterval: 300s
repeatInterval: 3600s

 groupBy:
 - alertname
 - severity
 - type
 matchers:
 - name: 'type'
 matchType: '=~'
 value: '(Route Leak)|(Exact Prefix Hijack)'
 receiver: 'email'
receivers:
 - name: 'email'
 emailConfigs:
 - to: '{{ .CommonLabels.receiver_endpoint }}'
 ...

 headers:
 - key: 'subject'
 value: ...
 html: ...

 Configure

codebgp.com

How we use GraphQL subscriptions for Alert Rules

● Example of a subscription query (which is entered to the system as a mutation) to detect exact prefix

hijacks for prefixes belonging to Code BGP (AS 50414).

● No additional code needed, all the info is in the mutation!

codebgp.com

GQL alert rule | Example 01: Route Leak
● Query: subscription LeakedPrefixesMyASNOriginates(

$asn: bigint!,

$prefixes: [cidr!] = [],

$ds_thres: Int!) {

prefixes(where: {

routes: {originAutonomousSystem: {number: {_eq: $asn}}},

network: {_nin: $prefixes},

data_source_count: {_gte: $ds_thres}

} order_by: {network: asc}) {

network

}

}

● Variables: {

asn: <asn>,

prefixes: [<prefix_1>,...,<prefix_N>],

ds_thres: <data_source_num_threshold>}

● Regex: "^.*prefixes.*network.*$"

● Description: Unexpected prefixes in the list of prefixes that are announced by configured ASes.

---ALERT START---
Status
Firing
Started
14:39:39 UTC 2023-02-14
Ended
No
Severity
Critical
Name
My Leak
Type
Route Leak
Description
Unexpected prefixes in the list of
prefixes that are announced by
configured ASes.
Event
Leaked prefixes: <leaked_prefix>
Configured Resources
AS<as> is configured to originate
prefixes: <configured_prefix>, seen by
at least <X> data sources.
---ALERT END---

codebgp.com

● Query: subscription IllegalOriginsFromWhichExactPrefixesAreAnnounced(
$asns: [bigint!] = [], $prefixes: [cidr!] = []) {

routes(where:

{originAutonomousSystem: {number: {_nin: $asns}},

prefix: {network: {_in: $prefixes}}

} order_by: {

prefix: {network: asc},

originAutonomousSystem: {number: asc}

}) {

originAutonomousSystem {

Number

}

prefix {

Network

}

}

}

● Variables: {asns: [<asn_1>,...,<asn_K>], prefixes: [<prefix_1>,...,<prefix_N>]}

● Regex: "^.*routes.*originAutonomousSystem.*$"

● Description: Illegal origin ASes that announce configured prefixes.

GQL alert rule | Example 02: Exact Prefix Hijack
---ALERT START---
Status
Firing
Started
14:39:39 UTC 2023-02-14
Ended
No
Severity
Critical
Name
My Hijack
Type
Exact Prefix Hijack
Description
Illegal origin ASes that announce
configured prefixes.
Event
AS<ash> has hijacked prefixes:
<prefix>.
Configured Resources
AS<asv> are configured to originate
prefixes: <prefix>.
---ALERT END---

codebgp.com

And many more can be expressed/supported!

Supported Alert Types Description

Exact Prefix Hijack Illegal origin ASes that announce configured prefixes.

Sub-Prefix Hijack Illegal origin ASes that announce subprefixes of configured prefixes.

Route Leak
Unexpected prefixes in the list of prefixes that are announced by
configured ASes.

New Neighbor
New neighbors that appear to peer with configured ASes. Possible AS
path manipulation.

Neighbor Leak/Hijack
New neighbors that not only appear to peer with configured ASes, but
also propagate their prefixes.

Squatting
Illegal origin ASes announcing prefixes that are not currently announced
by configured ASes.

Presence in AS Path Presence of ASes in paths towards configured prefixes.

Invalid AS Path Pattern Violation of valid pattern by AS paths towards configured prefixes.

Long AS Path Paths towards configured prefixes exceed a specified length threshold.

Prefix Visibility Loss Visibility of prefix falls below a configured data source count threshold.

Peering Visibility Loss Visibility of peering falls below a configured data source count threshold.

Supported Alert Types Description

RPKI-Invalid Detection RPKI-Invalid announcements of configured prefixes by other ASes.

RPKI-Invalid Announcement RPKI-Invalid announcements by configured ASes.

RPKI-Invalid Propagation RPKI-Invalid routes propagated by configured ASes.

RPKI-NotFound Propagation RPKI-NotFound routes propagated by configured ASes.

Bogon (Exact-)Prefix Announcements of bogon prefixes by configured ASes.

Bogon (Sub-)Prefix Announcements of bogon subprefixes by configured ASes.

Bogon AS In-path presence of bogon ASes, in routes towards configured prefixes.

AS Path Comparison
Discrepancies in AS paths towards the same prefix, comparing between
different Data Services, up to a terminating (end) AS.

Prefix Comparison
Discrepancies in prefixes announced by configured ASes, comparing
between different Data Services.

Custom User-defined

codebgp.com

Summary

● Ingest, process, store and query streaming control-plane data in real-time

○ Expose stored data via GQL and subscribe to state changes (live queries or streams)

○ State changes are propagated in real-time to GQL subscription clients

● GQL offers powerful primitives to assist in the complex field of BGP and inter-domain routing

○ Strict type system to express data

○ Queries/Subscriptions/Mutations to access data

○ Data shaping and hierarchies

○ Unified API + single endpoint

○ Use case: BGPQL

codebgp.com

Summary

● Distributed event-driven mservice streaming architectures + GQL:

○ Programmatically ask operational questions

○ Drive network automation with a modern API

○ View real-time state updates in inter-domain routing

○ Generate useful metrics, like BGP update rates, aggregates, visibility artifacts, etc.

○ Be alerted and act on illegal changes (leaks, hijacks, etc.) even before BGP propagation ends!

codebgp.com

Thank you! vkotronis@codebgp.com
codebgp.com

Questions

codebgp.com

Underlying software

Stack

B
A

C
KU

P

codebgp.com

Monitor • Detect • Protect
What we have built: Code BGP Platform

B
A

C
KU

P

codebgp.com

Vasileios Kotronis

CTO & co-founder | Code BGP

vkotronis@codebgp.com

https://www.linkedin.com/in/vasileios-kotronis/

About me
B

A
C

KU
P

