Evaluating a DNS Servers value in a DDoS attack

Introducing DNS Hammer

- DNS Servers are popular for DDoS attacks
- We make our DNS servers useless for a botmaster

About Me

- Eddi Blenkers
- Security Blue Team: ICT Security Specialist for Kanton Aargau
- Pcap Addict: Sharkfest Speaker, occasional blogs at packet-foo.com
- Twitter: @PcapReader

Short Recap: DNS Reflection Attacks

- A Botmaster controls a number of infected computers.
- Infected hosts send DNS requests with a spoofed IP source address.
- The victim whose source address is spoofed receives a ton of responses.

DDoS from a Packet Level

Asked for ANY MX works, too

30 DNS Answers / in 3 IP Fragments

DNS Payload: 4'081 Byte

```
Time Source
                        Destination
                                       Protocol
                                               Length Info
                        198.51.100.165
                                                1514 Fragmented IP protocol (proto=UDP 17, off=0, ID=3d8d)
40 0.000 71.171.93.91
                                       IPv4
                                                1514 Fragmented IP protocol (proto=UDP 17, off=1480, ID=3d
41 0.000 71.171.93.91
                        198.51.100.165
                                       IPv4
 42 0.000 71.171.93.91
                        198.51.100.165
                                       DNS
                                                1163 Standard query response 0x02c0 ANY peacecorps.gov RRS:
Domain Name System (response)
   Transaction ID: 0x02c0
 > Flags: 0x8380 Standard query response, No error
   Questions: 1
   Answer RRs: 30
                                                                   Responses for
   Authority RRs: 0
   Additional RRs: 0
                                                                   peacecorps.gov
   Oueries
 Answers
   > peacecorps.gov: type RRSIG, class IN
                                                          Source is an
   > peacecorps.gov: type RRSIG, class IN
   > peacecorps.gov: type TXT, class IN
   > peacecorps.gov: type NSEC3PARAM, class IN
                                                          open resolver
   > peacecorps.gov: type TXT, class IN
   > peacecorps.gov: type TXT, class IN
     peacecorps.gov: type RRSIG, class IN
     peacecorps.gov: type RRSIG, class IN
   > peacecorps.gov: type TXT, class IN
     peacecorps.gov: type TXT, class IN
   > peacecorps.gov: type DNSKEY, class IN
   > peacecorps.gov: type SOA, class IN, mname ns0.peacecorps.gov
   > peacecorps.gov: type DNSKEY, class IN
   > peacecorps.gov: type AAAA, class IN, addr 2600:1f18:46d5:1100:4526:5944:91c8:a5b
     peacecorps.gov: type DNSKEY, class IN
   > peacecorps.gov: type RRSIG, class IN
```

The DNS Request

- The request is a 71-byteIP packet
- The response was a total of 4'157 byte in 3 IP packets (ignoring Ethernet)
- The attackers' traffic is amplified
 58 times!

Why is the attack so effective?

- Domain peacorps.gov supports DNSSEC
 - DNSSEC is not a misconfiguration!
- The open resolver sends 4k DNS messages.
- The open resolver responds to queries for ANY.
- The open resolver is not configured for rate limiting.
- The open resolver is ... well, open. But is it intentionally open?

Common DNS Reflectors

- Open resolvers:
 - Respond to anyone for all domains by design.
 - Usually have rate limiting enabled.
- Authoritative name servers:
 - Respond to anyone for "their" domain by design.
 - Some lack rate limiting.
- Company-internal name servers:
 - Should only respond to internal hosts for all domains.
 - Should.
 - Usually no rate limiting.

Make Name Servers useless for Botmasters

- DNS reflections would be impossible if all operators
 - Implement Rate Limiting
 - Limit DNS traffic with a QoS policer
 - Implement egress filters
 - Block requests for ANY records or at least redirect clients to TCP
 - Limit UDP message size to \$USEFUL_SIZE
- Alas, not a all systems are run by professionals.

Open Resolvers

- Send responses to all clients for all domains
- Implement good rate limiting, if they are designed as open resolvers
 - Examples: 1.1.1.1, 8.8.8.8, 9.9.9.9
- A few DNS servers run without rate limit
 - Respond to everyone
 - Dish out ANY records in vast quantities
 - Support DNS extensions for 4 kB message size

Authoritative Name Servers

- Respond to all clients, if they are authoritative for the desired domain
- Interesting for a botmaster if
 - Servers respond to queries for ANY
 - Domains have large MX or TXT records
 - Domains are signed (DNSSEC)
 - Servers send large records
 - No rate limiting is enforced

Company Internal Name Servers

- A firewall blocks queries from external hosts
 - Nothing can happen, right?
 - Our server only receives valid queries for production traffic, doesn't it?
 - All security measures are a waste of time, money, usability. Basta.
- Great for infected clients:
 - Server does not check the clients IP address.
- Hint: Even if you don't implement rate limiting, at least block traffic with a source IP address that's not on your local network.

How valuable is my DNS server for an attacker?

- Option A: Get infected, become part of a botnet, see what will happen
- Option B: Use DNS Hammer to test your configuration

Introducing DNS Hammer

- Find out, if a DNS server would be a "good" reflector for a botmaster.
- Find out, how the configuration affects DNS clients.
- Explore DNS configurations of other organizations to get ideas for your own servers.

Locate Authoritative Name Servers

- Use the NS Finder tool to identify authoritative servers
- Select an IPv4 address
- Right-click and "Test Forward Lookup"
- IPv6 support will follow

Test Name Server

- Define number of DNS records
 - A, AAAA, MX, ANY
- Note the orange line
 - swinog.ch sets the truncated flag for queries to ANY
 - ANY is requested 40 times per second

DNS Truncated Flag

- Informs the client that there is more data available through TCP.
- Users won't notice the switch to TCP.
- TCP stops spoofing attacks.

• Remember: DNS uses UDP and TCP port 53!

Report for swinog.ch

```
Test Report for Domain swinog.ch
Name server: 91.206.24.2, recursion disabled
```

Requests send: 2325
Responses received: 2325
Truncated responses received: 600

The following DNS errors were encountered: Error code 3 (Non-existent Domain): 300 (likely caused by random queries)

Bytes send: 153,4 kB
Bytes received: 241,4 kB
Amplification factor: 1,6

Demo DNS Hammer

- RIPE has authoritative name servers with ARIN, APNIC, AfriNIC, LACNIC
- Each server has its own configuration.
- Let's explore ripe.net

Configuring DNS Rate Limiting

- Beyond the scope of this talk
- Well documented for BIND, UNBOUND and Microsoft
 - https://kb.isc.org/docs/aa-01000
 - https://www.nlnetlabs.nl/documentation/unbound/unbound.conf/
 - https://docs.microsoft.com/en-us/powershell/module/dnsserver/setdnsserverresponseratelimiting?view=windowsserver2019-ps

More on DNS Hammer

- https://www.dnshammer.com
- https://blog.packet-foo.com/2021/01/introducing-dns-hammer-part-1-ddos-analysis-from-dns-reflection-to-rate-limiting/

