
1

The work behind an
Open Source Routing stack

 SWINOG - Oct 30, 2018

Martin Winter
NetDEF / OpenSourceRouting

About me…

‣  FRRouting Maintainer

‣  FRRouting TSC Member

‣  Runs CI System for community

‣  Co-Founder NetDEF (a US non-profit)
•  (OpenSourceRouting is a project by NetDEF)

‣  Past:
•  Quagga
•  Cisco (Engineering)
•  Large ISP (Network Architecture)

2

3

What is FRRouting
Quick Introduction

What is FRR ?

‣  Open Source (GPLv2+) Routing Stack

‣  Implements RIP, RIPng, OSPF (v2&v3), ISIS, BGP,
PIM, LDP, NHRP, Babel, EIGRP, BFD, …

‣  Fork of Quagga

‣  Works on Linux and most BSD based systems

‣  For use in many Clouds as virtual routers, white box
vendors and network providers (full routing stack)

4

(for the not so technical People)

FRR - Why a fork?

5

Open Community Model

Fast & Open Development

Community Led and Driven

FRR - Who is behind the Fork?

6

FRR Major features added since Fork
‣  2.0 (April 2017)
•  RFC 5549 Unnumbered Support (most protocols)
•  LDP IPv4/IPv6
•  VRF lite
•  JSON output support

‣  3.0 (Oct 2017)
•  BGP EVPN base
•  PIM Sparse Mode
•  NHRP

‣  4.0 (March 2018)
•  BGP RPKI
•  BGP EVPN Type 3 & 4
•  BGP MPLS Ethernet VPN & Multicast
•  BABEL
•  EIGRP

7

FRR Major features added since Fork

‣  [continue] 4.0 (March 2018)
•  Static VRF route leaking
•  OSPFv2 Segment Routing

‣  5.0 (July 2018)
•  PIM Multicast Trace [draft-ietf-idmr-traceroute-ipm]
•  IS-IS 3-way Handshake [RFC5303]
•  BGP VPN-VRF route leaking per [RFC4364]
•  BGP VRF with NETNS backend
•  New Policy Based Routing Daemon

‣  6.0 (Oct 2018)
•  BFD daemon
•  Static Routes moved from zebra to it’s own daemon
•  IS-IS Src-Dest Routing [draft-ietf-isis-ipv6-dst-src-routing]

8

FRR Major features added since Fork

‣  Current development branch
•  OpenFabric Draft [draft-white-openfabric]
•  YANG Northbound (= Configuration) API
•  Work on Southbound (= Kernel) API/Interface

JOIN US on future development

https://github.com/frrouting

9

10

The life of a PR (Git pull request)
What happens when someone pushes a pull request

11

Key Points on Testing:

•  We can’t afford time for manual testing.

Automate. Everything.

•  Automated responses should be clear to first
time users. We can’t afford time to explain test
failures.

12

Step 1
Github Pull Request is pushed

13

Step 2
CI System is triggered by Github

Step 3 – First CI Phase
CI System Builds on all supported Distros

14

15

Compiling… (on VMs)
All build on x86 (64bit) architecture except where noted

Ubuntu Debian CentOS FreeBSD

NetBSD OmniOS OpenBSD

Ubuntu 14.04
Ubuntu 16.04 (x86_64 +
i386 + ARMv7 + ARMv8)

Ubuntu 18.04

CentOS 6
CentOS 7

Debian 8
Debian 9 (x86_64 + ARMv7

+ ARMv8)

FreeBSD 10
FreeBSD 11

NetBSD 6
NetBSD 7

OpenBSD 6 OmniOS

Alpine (in testing)

Alpine 3.8

And building again… Packages

16

•  Ubuntu 14.04 for 64bit Intel
•  Ubuntu 16.04 for 32/64bit Intel, ARM7, ARM8
•  Debian 8 for 64bit Intel
•  Debian 9 for 64bit Intel, ARM7, ARM8
•  CentOS 6 / 7 for 64bit Intel
•  Snap Package for 32/64bit Intel, ARM7, ARM8

Linux only (to save time)

Testing uses packages
 - whenever possible

Step 4
Testing Phase

17

18

Packages Test: Install/Uninstall

•  Install package with no errors/warnings
•  Start all routing daemons
•  Kill each routing daemon and verify automatic restart
•  Uninstall package with no errors/warnings

Run on Intel 64-bit:
•  Ubuntu 14.04
•  Ubuntu 16.04
•  Ubuntu 18.04
•  CentOS 6
•  CentOS 7
•  Debian 8
•  Debian 9

19

Basic Protocol functionality

•  Install package on Ubuntu 16.04
•  Verify basic protocol functionality (2-5 basic tests each

protocol):
•  RIP (IPv4)
•  RIPng (IPv6)
•  OSPFv2 (IPv4)
•  OSPFv3 (IPv6)
•  ISIS (IPv4 & IPv6)
•  BGP (IPv4 & IPv6)
•  LDP (with MPLS) (IPv4)

Tests use commercial Ixia IxANVL RFC Compliance Tests Suites

Static Analysis: Clang-Analyzer

20

Comparing to previous build for Pull
Requests to find new potential issues

Note: This output is from FRR 2.0
The current FRR 6.0 has no warnings
or errors found by Clang SA

21

CI System: Topology Tests

FRR test framework for specific (complex) Networks
•  Testing features which are specific to FRR or lack existing

test tools
•  Should be easy for everyone in community to run
•  Tests exist for various protocols and features
•  Allows anyone in community to add test which are

executed by CI system (CI executes all the topology tests)
•  Topology Simulations with Mininet on Ubuntu 16.04 on

x86_64, i386, ARMv7 and ARMv8
•  Uses pytest framework

https://github.com/frrouting/topotests

22

CI System: Address Sanitizer

‣  Rebuilds and runs Topotests with Address Sanitizer
•  Similar to Valgrind – Finds:
-  Buffer Overflows
-  Memory leaks
-  Use after free/return

•  Better performance than Valgrind
•  (so far) no false positives!

https://github.com/google/sanitizers/wiki/AddressSanitizer

Step 5
CI Results

23

Step 5 (better…)
CI Results

24

Step 6
Manual Code Review

25

‣  First manual step
•  Manual review done by one or more of the maintainers

‣  Back to submitter if questions or issues
•  Any comments / disagreement need to be resolved in

code or comments before a merge

‣  Merge has to be done by a maintainer working for a
different organization

‣  Missing / slow reviews or unresolved disagreements
are addressed in weekly open meeting
•  If still no agreement, then TSC has final decision

Step 7
 Merge (finally!!)

26

BUT – WAIT…
 not yet done!

More testing after the merge of
the updated branch

27

Testing the merged code

‣  Same tests as for PR plus:
•  Build with more setups (incl slower ARM7 builds)
•  Build packages for all platforms and publish on CI
•  Build RPKI version of FRR with packages (and test them)
•  Run full RFC compliance test
-  Ubuntu 16.04 only
-  Just single pass (time constrains – 4 VMs run for 18hrs)

•  Coverity Scan (Commercial Static Analysis)

28

Coverity Scan
https://scan.coverity.com/projects/freerangerouting-frr

29

DONE.
Pull Request completed

We do on average 4 merges per day
(incl weekends and holidays)

30

And a few less frequent tests…

RFC Compliance Test: Ixia IxANVL

31

Master
2017-03-07

Release
2.0

3.0-dev
2017-04-25

Master
2017-05-17

3.0-dev
2017-05-24

Master
2017-06-02

Master
2017-06-26

3.0-dev
2017-06-30

Master
2017-07-20

Release
3.0-rc1

Type FRR FRR FRR FRR FRR FRR FRR FRR FRR FRR

Commit ID 1a664f5 3e71b5d 3d7746c b84ccd4 f731a65 bade23d f30a732 f92f83b dceb5f8 c47b10c

Commit Date 2017-03-08 2017-04-02 2017-04-25 2017-05-16 2017-05-24 2017-06-02 2017-06-27 2017-07-01 2017-07-21 2017-08-09

ANVL-BGP4-1.1

MUST

ANVL, setup verification

ANVL, Setup Verification
DUT Listens on TCP port 179 for BGP4 Connection

Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass

FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass

ANVL-BGP4-1.2

MUST

ANVL, setup verification

ANVL, Setup Verification
Establish BGP4 connection to the DUT and transit to Established state

Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass

FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass

ANVL-BGP4-1.3

MUST

ANVL, setup verification

ANVL, Setup Verification
Router adds routes contained in the newly received Update Message to
its routing table

Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass

FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass

ANVL-BGP4-1.4

MUST

ANVL, setup verification

ANVL, Setup Verification
Router forwards new Update routes

Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass

FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass

ANVL-BGP4-2.1

MUST

RFC4271, Sect. 4, p 11,
Message Formats

Message Formats
The maximum message size is 4096 octets. All implementations are
required to support this maximum message size.

Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass

FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass

ANVL-BGP4-3.1

MUST

RFC4271, Sect.4.2, page 13,
OPEN message format

OPEN Message Format
After a TCP connection is established, the first message sent by each
side is an OPEN message.

Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass Ubuntu 16.04: pass

FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: untested FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass FreeBSD 10.3: pass

Page 1 of 37

RFC Compliance Test Report

BGP4 Results

Test Report created at 2017-08-16 01:58:28 UTC

32

Protocol Performance & Scale
‣  Executed on physical Linux PCs
•  DUT Hardware needs consistency to compare
•  4 x PCs (Quad-Core, 8GB RAM, 6 Ethernet [Lanner

FW-7525D])

‣  Test Equipment Ixia Chassis X16 (IxNetwork /
IxAutomate)
•  40+ Gbit/s ports

‣  Not yet automated
•  Test mostly automated
•  Needs result parsing (Pass/Fail criteria?)

Protocol Fuzzer: Spirent SPS-8000

33

•  Basic Function of the Fuzzer:
•  attacks the System with malformed packets.
•  Protocol Fuzzer knows packet and doesn’t just random changes.

•  Fields missing, too long, too short
•  Value in field just 1 too high or too low
•  Negative values (or what might be negative if someone accidently uses a

signed integer)
•  Verifies recovery of system between each test (or multiple tests)

34

It all adds up to a lot of work…

FRRouting activity since the fork

35

Code size doubled, > 2000 Pull Requests, > 9000 commits

Apr 2017 Oct Jan 2018 April Oct

FRRouting
fork

announced

FRR 4.0 FRR 3.0 FRR 2.0 FRR 5.0

Aug

500st
Pull Req

submitted

Mar

1500st
Pull Req

submitted

1000st
Pull Req

submitted

2000st
Pull Req

submitted

Aug Jul

FRR 6.0

Testing Executed

36

Total Runtime for Tests executed Jan until October 2018

Pull Request
Create/Update

Bi-Weekly &
Release

Github triggered Pull
Request Testing

Pull Request
Merge

Github triggered extended
tests (Merges)

Manual triggered in-depth
testing

‣  5614 Runs
‣  Average runtime

79min
‣  25 nodes in parallel

required

➜ 21 years VM runtime

‣  1610 Runs main
‣  Average runtime

131min
‣  30 nodes in parallel

‣  530 Runs RPKI
‣  Average runtime

58min
‣  11 nodes in parallel

➜ 13 years VM runtime

‣  1 214 000 single RFC
Compliance tests
‣  Average runtime

3min
‣  2 nodes in parallel

required
➜ 14 years VM runtime
(plus other manual tests)

37

27%
Of the Pull Requests CI runs
discover an error (and fail)

Giving instant feedback to contributor
about commit without waiting for
another community member to review

38

Challenges
‣  Other package dependencies
•  Testing quality?
•  Available for all our platforms?
•  We may need to run testing for them too…

‣  More contributions
•  à More testing work

‣  Keep up Documentation
‣  Keep up with new tests

39

JOIN US:
https://frrouting.org
Github.com/frrouting

Mailing lists: lists.frrouting.org

