
U
n

d
e

rsta
n

d
in

g
 T

C
P

Understanding TCP

The concept and ideas behind it

André Oppermann <oppermann@networx.ch> Page 1

The concept and ideas behind it

No header bit definitions

No DoS protection stuff



U
n

d
e

rsta
n

d
in

g
 T

C
P

What is TCP

• Transmission Control Protocol

• Defined in RFC793 (in 1981!)

• Based on „A Protocol for Packet Network 

Intercommunication” by Vinton G. Cerf, Robert E. 
Kahn (in 1974)

• Updated over the years by a large number of

André Oppermann <oppermann@networx.ch> Page 2

• Updated over the years by a large number of
additional RFC‘s

• TCP is the primary protocol on the Internet

• That is what I will talk about today



U
n

d
e

rsta
n

d
in

g
 T

C
P

Purpose of TCP

• Provide a reliable data channel

• It tries hard to deliver the data

• And tells the application if it can‘t

• Sequential and in-order data stream

André Oppermann <oppermann@networx.ch> Page 3

• Sequential and in-order data stream

• It ensures that A is delivered before B

• Over a lossy and ‚dumb‘ network (IP)

• The Internet everywhere and anytime



U
n

d
e

rsta
n

d
in

g
 T

C
P

Smart vs. Dumb (1)

• Two network types exist

• Smart network with dumb terminals

• Terminal is just a presentation device

• All the logic and data handling is in the network

• Centralized approach

André Oppermann <oppermann@networx.ch> Page 4

• Centralized approach

• Everything has to be implemented and prepared in the
network

• Examples:

• Telephony network

• Compuserve, AOL, MSN, Minitel



U
n

d
e

rsta
n

d
in

g
 T

C
P

Smart vs. Dumb (2)

• Dumb network with smart terminals
• Terminal is also doing data handling

• The network is just a dumb packet transporter
• Stateless to any packet flows

• Network is usage agnostic

• Every packet is just a packet like all the others

André Oppermann <oppermann@networx.ch> Page 5

• Every packet is just a packet like all the others

• Decentralized approach
• The terminal has to implement the data handling itself

• End to end principle

• Examples:
• Internet

• X.21 network (partially stateful)



U
n

d
e

rsta
n

d
in

g
 T

C
P

Dumb network (1)

• The terminal doesn‘t know anything about the

network

• No idea on the speed and bandwidth

• No idea on the delays and round trip times

• Absolutely nothing!

André Oppermann <oppermann@networx.ch> Page 6

• The network is a black box

• TCP has to discover everything by itself

• Through observing the network



U
n

d
e

rsta
n

d
in

g
 T

C
P

Dumb network (2)

• IP packets can get lost at any time
• Queue overflows in switches and routers

• Bit errors or collisions on Layer 2

• Lost link, broken line, …

• Anything

• Lost packets are not reported!

André Oppermann <oppermann@networx.ch> Page 7

• Lost packets are not reported!

• Packet loss comes with these properties
• Single packet is lost

• A whole number (burst) of packets is lost

• Packets are reordered (B before A)

• No packets make it through



U
n

d
e

rsta
n

d
in

g
 T

C
P

Transmission Control Protocol

• It‘s the job of TCP to hide all these problems

• User and application don‘t have to care

• Avoid re-inventing the wheel for every application

• TCP hides a lot of complexity as you will find 

André Oppermann <oppermann@networx.ch> Page 8

• TCP hides a lot of complexity as you will find 

out



U
n

d
e

rsta
n

d
in

g
 T

C
P

TCP overview

• TCP consists of a few primary mechanisms

• Acknowledgement system

• Loss detection system

• Loss recovery and retransmit system

• Bandwidth & congestion control

André Oppermann <oppermann@networx.ch> Page 9

• Timeouts

• More detail on each in the next slides



U
n

d
e

rsta
n

d
in

g
 T

C
P

Acknowledgement system (1)

• The remote terminal must tell when it received

data from us

• It has to send an acknowledgement („I got the

data“)

Data: ABC

André Oppermann <oppermann@networx.ch> Page 10

ACK: 3 Bytes



U
n

d
e

rsta
n

d
in

g
 T

C
P

Acknowledgement system (2)

• Sequence space numbering in each
direction

• So that both terminals know where they are

• TCP header contains two fields

• Start sequence number of this packet

• Acknowledgement sequence number of the latest (in-

André Oppermann <oppermann@networx.ch> Page 11

• Acknowledgement sequence number of the latest (in-
order) received packet

• It takes a full RTT for us to know whether our
data packet was received

• And it takes longer to find out that it
got lost



U
n

d
e

rsta
n

d
in

g
 T

C
P

Loss detection system (1)

• How do we find out that the data packet was 

lost?

• Two methods exist

• See next slides

André Oppermann <oppermann@networx.ch> Page 12

• See next slides



U
n

d
e

rsta
n

d
in

g
 T

C
P

Loss detection system (2)

• Whenever we send a data packet we start a 

timer

• When it expires we can assume the packet got lost

• The data packet may have made it but the ACK got

lost…

• The timer is dynamically adjusted based on the

André Oppermann <oppermann@networx.ch> Page 13

• The timer is dynamically adjusted based on the

measured RTT

ABC

�



U
n

d
e

rsta
n

d
in

g
 T

C
P

Loss detection system (3)

• Four ACK‘s with the same ACK number

• We only get an ACK when a packet was received

• We can assume the data packet at the ACK number

got lost

• May have been severe reordering as well…

André Oppermann <oppermann@networx.ch> Page 14

ABC

DEF

GHI

JKL

MN

ACK: 3
ACK: 3

ACK: 3
ACK: 3



U
n

d
e

rsta
n

d
in

g
 T

C
P

Loss recovery and retransmit system (1)

• The sender keeps a copy of the data it has sent

• Until it is acknowledged

• Called a send buffer

• When a data packet is lost, it can be sent again

André Oppermann <oppermann@networx.ch> Page 15

ABC

DEF

GHI

JKL

MN

ACK: 3



U
n

d
e

rsta
n

d
in

g
 T

C
P

Loss recovery and retransmit system (2)

• The receiver also has a buffer for incoming

data

• To store the data until the application reads it

• To hold data when a packet before it got lost (or

reordered)

André Oppermann <oppermann@networx.ch> Page 16

ABC

DEF

GHI

JKL

MN

ACK: 3

ABC

GHI

JKL

MN



U
n

d
e

rsta
n

d
in

g
 T

C
P

Bandwidth & congestion control (1)

• TCP can‘t just blast out the data packets at

maximum speed

• Overflows buffers in switches and routers

• Many packet losses

• There are other TCP terminals too

André Oppermann <oppermann@networx.ch> Page 17

• No idea how fast the network is all the way to the

receiver



U
n

d
e

rsta
n

d
in

g
 T

C
P

Bandwidth & congestion control (2)

• We need something that ensures

• Fairness for multiple TCP senders

• Careful capacity probing

• Conservation principle (overall efficiency)

André Oppermann <oppermann@networx.ch> Page 18

• Measuring the ACK‘s gives two feedbacks

• Packet loss

• Change in RTT

• Both are delayed feedbacks (at least 1 RTT)



U
n

d
e

rsta
n

d
in

g
 T

C
P

Bandwidth & congestion control (3)

• Congestion window

• To control how fast TCP can send new data

• Limits the amount of unacknowledged data (inflight)

• AIMD algorithm

André Oppermann <oppermann@networx.ch> Page 19

• Additive increase

• For every received ACK two new packets are sent

• Exponential growth

• Multiplicative decrease

• On a lost packet the window is reduced to 50%



U
n

d
e

rsta
n

d
in

g
 T

C
P

Bandwidth & congestion control (4)

• Graph of AIMD
w

in
d

o
w

real bandwidth

André Oppermann <oppermann@networx.ch> Page 20

time

co
n

g
e

st
io

n
w

in
d

o
w

real bandwidth



U
n

d
e

rsta
n

d
in

g
 T

C
P

Bandwidth & congestion control (5)

• Using only AIMD is inefficient

• Sawtooth effect

• We want better congestion avoidance

• TCP has two send modes

André Oppermann <oppermann@networx.ch> Page 21

• TCP has two send modes

• Slow start (probing phase)

• Additive increase

• Congestion avoidance

• One additional packet per full RTT



U
n

d
e

rsta
n

d
in

g
 T

C
P

Bandwidth & congestion control (6)

• Graph of slow start and congestion avoidance
w

in
d

o
w

real bandwidth

André Oppermann <oppermann@networx.ch> Page 22

time

co
n

g
e

st
io

n
w

in
d

o
w

real bandwidth



U
n

d
e

rsta
n

d
in

g
 T

C
P

Bandwidth & congestion control (7)

• Low RTT scales much faster

• Faster reaction times

• Unfairness when low and high RTT transfer share

the same link

• Throughput vs. goodput

André Oppermann <oppermann@networx.ch> Page 23

time

co
n

g
e

st
io

n
w

in
d

o
w

real bandwidth



U
n

d
e

rsta
n

d
in

g
 T

C
P

Timeouts

• TCP tries to be realiable but can‘t guarantee to

transfer all data

• Network disconnect

• Receiver crashed…

André Oppermann <oppermann@networx.ch> Page 24

• It has to know when to give up

• TCP tries to send the data again

• Each time the interval increases

• Until there is only little hope

• After approx. 42 minutes



U
n

d
e

rsta
n

d
in

g
 T

C
P

TCP improvements (1)

• Delayed acknowledgements

• To reduce the ACK traffic and number of packets

• Nagle algorithm

• Only have one packet in flight

• For interactive applications (telnet/ssh)

• Timestamps

André Oppermann <oppermann@networx.ch> Page 25

• Timestamps

• Improved RTT measurement

• SYN cookies

• Avoid state tracking for incoming connections

• ECN

• Explicit congestion notification (by router)



U
n

d
e

rsta
n

d
in

g
 T

C
P

TCP improvements (2)

• SACK

• Selective Acknowledgement

• Reports which data is received after a lost one

• Better loss recovery algorithms

André Oppermann <oppermann@networx.ch> Page 26

ACK: 3 and 7 to 14

ABC

DEF

GHI

JKL

MN

ACK: 3

ABC

GHI

JKL

MN



U
n

d
e

rsta
n

d
in

g
 T

C
P

TCP improvements (3)

• Better congestion control algorithms

• Linux uses „CUBIC“

• Windows 7 uses „Compound TCP“

• Some more proposed

André Oppermann <oppermann@networx.ch> Page 27

New Reno, CUBIC

Compound, Illinois



U
n

d
e

rsta
n

d
in

g
 T

C
P

Tuning TCP

• Socket buffer sizing

• Enable window sizing

• Enable timestamps

• Enable SACK

André Oppermann <oppermann@networx.ch> Page 28



U
n

d
e

rsta
n

d
in

g
 T

C
P

Delay * Bandwidth product

• Defines how much bandwidth can be used

• Send buffer keeps data for retransmit

• Send buffer limits how much data can be inflight

• Receive buffer limits how much data can be

received until the application reads the data

André Oppermann <oppermann@networx.ch> Page 29

RTT * Bandwidth

10ms 100ms 200ms

10Mbit 0.02MB 0.2MB 0.3MB

100Mbit 0.2MB 1.2MB 2.5MB

1Gbit 1.2MB 13MB 25MB



U
n

d
e

rsta
n

d
in

g
 T

C
P

Tuning the network for TCP

• Active queue management

• RED (random early detection)

• Drop packets before the queue is full

• Drop only one packet of any concurrent TCP connection

(statistically)

André Oppermann <oppermann@networx.ch> Page 30

• Properly sized interface buffers

• Means large buffers

• Delay before loss



U
n

d
e

rsta
n

d
in

g
 T

C
P

Questions?

• Don‘t hesitate to contact me!

• Thank you for your attention

André Oppermann <oppermann@networx.ch> Page 31

• I‘m available as a consultant and network

engineer who can look at your situation in 

detail

• Email: oppermann@networx.ch


